Batteries Lifepo4 - protéger l'alternateur
Bonjour à tous, j'ai compris en lisant les nombreux fils consacrés aux batteries Lifepo4 que un des soucis était le brutal arrêt du chargement quand le BMS juge la batterie pleine. Cet arrêt brutal pouvant endommager l'alternateur. Une question toute bête qui aura fort probablement une réponse négative mais pas encore trouvée par moi sur HEO: ne suffirait-il pas de monter une batterie plomb en parallèle avec les batteries lithium qui aurait justement pour but d'absorber la tension de chargement au moment de la coupure par le BMS ? Et à propos, la tension de chargement des deux chimies (plomb et Lifepo4) est-elle fort différente ? (si ma mémoire est bonne mais plomb chargent au début un peu au-dessus de 14V pour vite redescendre à une tension de chargement de 13,5V +/-.
Merci d'avance pour vos lumières sur le sujet. Pierre.
Pierre j allais poser la même question, depuis deux ans pas de soucis avec parc service mixte, cette année je remplace la 54 amp pb par une Lifepo04 de 50 amp (achetée 150 €)
J avais cette sécurité au moteur, la 54 et les deux fois 20 amp Lifepo04
Pour le moment je compte laisser le 1 et le 2 ensemble
Ou seulement la batt moteur car les PS font le,job et le moteur est vraiment auxiliaire
Mais il y a des solutions techniques évoquées que je n ai pas compris, diode ma Hun ou autre
Je suis sûr que ça va être re expliquė
Alors la réponse trouvée entretemps sur Quora est déjà qu'une des raisons pour laquelle ça ne fonctionnerait pas est que la tension "plateau" des Lifepo4 est supérieur à celle des batteries plomb, donc si les deux chimies étaient misent en parallèle les Lifepo4 passeraient leurs temps à essayer de charger les batteries plomb...
La question étant essentiellement: peut-on mettre une plomb en parallèle avec une Lifepo4, voici une vidéo ou cette expérience est faite;
Une autre video qui fait ce test (mettre une plomb et une Lifep4 ensemble).
Depuis 3 saisons, j'ai 200Ah de AGM en // avec 200Ah de lithium.
D'après les lois générales de l'électricité, sous certaines conditions, une est générateur, l'autre récepteur, jusqu'à équilibrage.
Dans les faits, elles sont en permanence générateur, à moins d'avoir d'énormes consommateurs (grille pain, sèche cheveux ....) auquel cas la lithium délivre plus et devient brièvement récepteur.
Avec des charges normales, elles descendent toutes les 2 avec équilibrage de tension.
Concernant la protection des diodes de l'alternateur à la charge en cas de coupure, dans les faits ça ne sert à rien. Sous charge, la commutation du BMS est tellement rapide que la plomb n'aurait pas le temps de prendre la charge, et dans les autres cas, ça revient à mettre sur les plombs chargées une grosse charge, comme un guindeau par exemple, ce qu'un alternateur encaisse.
Enfin, concernant la soit disant décharge au repos de la lithium vers la plomb, c'est électriquement impossible, on ne peut pas remplir une batterie déjà plein. Ca se confirme en prenant l'ampérage entre les deux, et en mesurant la perte de la lithium après plusieurs jours.
J'attends de pied ferme ceux qui vont me parler de la batterie plomb qui se mettrait en court circuit, j'espère qu'ils ont révisé leurs cours de physique et qu'ils seront capable d'étayer leurs avancées et non seulement répandre une nouvelle légende urbaine.
OK donc ça fonctionne.
Mais alors pourquoi parle-t-on tellement sur HEO des batteries Winston ?
Pour le fait que comme elles n'ont pas de BMS elles sont notoirement + fiable et donc plus safe dans la durée ?
Ca je pourrais comprendre, un circuit électronique sur un bateau comme le mien qui est un trou humide...
Pour résumer les interventions ci-dessus, mettre une Lifepo4 en // avec une plomb ça fonctionne, par contre quant au fait que ce montage serait une valeur ajoutée pour la protection de l'alternateur, Red sky écrit que la coupure par le BMS est si brutale que la présence de la plomb n'aide pas et que l'alternateur prend quand même le coup dans les dents (à propos, coup de quoi ? Surtension ? pic d'ampérage ? pardonnez mon ignorance).
Red sky écrit que l'alternateur n'est pas si fragile et peut encaisser le coup.
Une possibilité est peut-être d'avoir à bord un alternateur d'avance et de voir...
Sur mon installation d'origine j'avais un Chargeur d'alternateur STERLING / 12 V / 80 A. Je suis passé sans aucune difficulté à la batterie lifepo4 12volts/200A BMS et c'est la révolution à bord dans la gestion de l'énergie ! L'installation date de une année et après 2000 milles nautique je suis pleinement satisfait !
- Préoccupation pour la batterie: Avec une tension float de 14.4V pour le Lithium...! Be my guest 8-)
- Préoccupation pour l'alternateur: En fait cela dépendra de la capacité de la LFP car le AtoB ne peut être limité en courant.
Excellente vidéo sur le fait de mélanger les deux chimies...
ma pierre a l'edifice; sans que ce que j’évoque je l'ai mis en œuvre.
On peux couper le debit de l'alternateur : il faut couper la tension de régulation sur la strator (il tourne en roue libre).
Pour cela comment ? en mettant un relay qui est est activé par le BMS.
BMS off: Relay off ==> strator Off ==> protection
BMS on: Relay on ==> strator On ==> production
A creuser.
Je suis le premier à dire qu'il ne faut pas isoler l'alternateur tournant, même brièvement, de la batterie.
Mais c'est comme l'alcool à bruler sur les barbecues, faut pas mais c'est fait quand même. J'ai dû remplacer X batteries sur des diesels que j'avais, enfin, pu redémarrer avec des moyens de fortune et il n'était pas question de l'arrêter pour passer d'une batterie à une autre (sans trainer quand même et avec quelques étincelles). A priori, les alternateurs ne sont pas morts dans l'instant.
A propos du BMS, je considère que c'est un outil de sauvegarde qui ne doit fonctionner qu'en cas d'incident. Il doit y avoir ailleurs un circuit de commande garanti X millions de fonctionnements sans broncher.
un des soucis était le brutal arrêt du chargement quand le BMS juge la batterie pleine.
Il y a une erreur sur la question de départ à mon avis. C'est le chargeur qui doit s'arrêter de charger lorsqu'il considère la batterie pleine. Le BMS peut éventuellement communiquer avec les chargeurs (canbus avec régulateur d'alternateur et autres chargeurs) mais l'ouverture du BMS sur seuil de tension haute n'a lieu que pour protéger la batterie d'une tension trop élevée, jamais atteinte si les chargeurs y compris l'alternateur fonctionnent bien.
Il me semble qu'il s'agit là d'une méprise récurrente selon laquelle le BMS régulerait la charge et décharge de la batterie. Ce n'est pas le cas sauf sur certaines installations haut de gamme ou la batterie communique avec les chargeurs. Et quand bien même, dans ce cas, l'ouverture brutale du BMS intervient pour raison de sécurité et non pour réguler la charge.
Alors que la batterie charge, en cas de déséquilibre entre les cellules, il est par contre tout à fait possible que le BMS déconnecte la batterie, ce quel que soit sont état de charge.
Hello,
quelques commentaires qui pour moi sont des règles de base :
Un BMS est un élément de sécurité et pas de régulation, ce n'est pas à lui de gérer la charge d'une batterie LFP (i.e. l'utiliser comme gestionnaire de charge quand la LFP est pleine.
Si on met les 2 batterie en // , au repos (i.e. alternateur ou chargeur de quai ou PS, .. sur OFF). Si les 2 batteries sont pleines, la LFP va se decharger un peu dans la plomb pour compenser l'autodécharge naturelle d'une batterie plomb.
Si ces deux batteries sont en parallèle et que l'alternateur les charge l'alternateur va avoir une température de fonctionnement de plus de 10°C augmentée par rapport à un conf plomb seule (batterie LFP plus demandante et resistance interne plus faible que la batterie plomb). Tout moteur tournant qui a sa température de fonctionnement normale augmentée de 10°C voit son MTBF divisée par 2 (en gros sa durée de vie moyenne).
Si le BMS déclenche , la batterie plomb va absorber en partie le pic de surtension , et va protéger un peu l'alternateur
En gros l'architecture proposée marchote mais n'est pas 100% secure et ne doit pas être recommandée (usure prématurée de l'alternateur, utilisation d'un LFP pas à son optimum, usure des MOSFET du BMS, pas fait pour déclencher à chaque fin de charge,...)
architecture recommandée :
un circuit moteur avec batterie plomb et chargeur de quai
un circuit servitude avec batterie LFP avec BMS dimmesionné par la batterie et pas par ce qui est en aval (et si panneaux solaire un régulateur MPPT programmé pour LFP)
un chargeur DC/DC programmable reliant les deux circuits avec une sortie sur circuit servitude programmée pour la charge de batterie LFP.
Après chacun fait ce qu'il veut, mais cela doit être en connaissance de cause.
Il ressort de ce fil et de mes recherches sur le net de cet après-midi qu'une des limitations du plan "drop in" d'une batterie lifepo4 tel que trouvé pour moins de 300 EUR sur amazon ou autre dans une installation plomb est la qualité du BMS incorporé dans cette batterie. En théorie si ce BMS incorporé est de haute qualité et couvre plusieurs protections, à savoir et par exemple:
1) Circuit de protection contre les surcharges
2) Protection de court circuit
3) Maintien d'un fonctionnement sûr, surveillance des données telles que la tension, le courant, la charge, l'état des cellules, l'équilibre des cellules
4) Optimisation de la tension de charge
5) Protection en cas de chargement à basse température
Le plan "drop in" sera déjà moins problématique que si il s'agit d'un BMS plus sommaire. J'essaye à présent de me faire une idée de ce à quoi on peut s'attendre à trouver dans les BMS de batteries LFP bon marché.
Pour ce qui est de l'alternateur et de sa protection, il semble que la technologie soit encore trop récente pour tirer dès à présent des conclusions sur la robustesse suffisante ou non d'alternateur prévus au départ pour charger des batteries plomb. Par ailleurs si un claquage d'alternateur n'implique que l'arrêt de fourniture d'A (et pas un danger de départ de feu), le prix de remplacement que j'ai trouvé pour le mien (190 EUR) ne justifie pas de mettre tout le circuit en ordre pour le protéger sauf si il claque chaque année ou plus.
Quand je parle de batteries Lifepo4 "Chinoise bon marché" c'est parceque c'est ce qui les qualifie, elles sont toutes chinoise et effectivement fort bon marché comparé au prix d'il y a quelques années.
P.S.: Je viens de visioner deux vidéos de Will prowse qui (notament) ouvre pour inspection du BMS et de la qualité générale de l'assemblage et ensuite teste des batteries LFP. Au moins pour deux batteries LFP qu'il inspecte, une Litime et Epoch, la qualité de ce qu'il trouve et la sophistication du BMS interne semble au rendez-vous. Ca expliquerait les retours positifs d'Héossiens en mode "drop in" dans des installations prévues pour le plomb. La batterie LFP de marque Litime se trouve dans le format 100 Ah pour 280 EUR sur Amazon donc fait partie des "batteries chinoises bon marché" tout en étant apparemment sérieusement conçues.
Il est à noté que ces batteries sont d'ailleurs présentées sur Amazon comme étant "Parfaites pour Camping-Car, Système Solaire, Bateaux" donc à priori conçue pour une installation "drop in". La sophistication de leur BMS n'est donc à priori pas un accident.
le schéma ( le seul truc que je n'aime pas sur mon bateau c'est que le guindeau est sur les batteries service d'origine , c'était asse compliqué à changer, j'ai donc mis des BMS dimensionnés à 120 A au lieu de 105 A pour contrer les appels de courant forts qu'il y a blocage du guindeau car ancre coincée)
J'ai monté moi même mes batteries LFP. j'ai acheté des cellules de grade A DE MARQUE en Hollande et des BMS sérieux.
le schéma ( le seul truc que je n'aime pas sur mon bateau c'est que le guindeau est sur les batteries service d'origine , c'était asse compliqué à changer, j'ai donc mis des BMS dimensionnés à 120 A au lieu de 105 A pour contrer les appels de courant forts qu'il y a blocage du guindeau car ancre coincée)
J'ai monté moi même mes batteries LFP. j'ai acheté des cellules de grade A DE MARQUE en Hollande et des BMS sérieux.
photos de mes batteries en cours de montage, de charge et de test
L'inconvénient des batterie LFP dite tous venant (en 6ans leur prix a été divise Par 3)c'est l'impossibilité d'utiliser le gaindeau ou de démarrer le diesel. Grace a ce chers BMS.
Ps si vous souhaiter gagner 20% d'autonomie en plus refaite votre circuit électrique VECU
Le cher BMS de ma batterie tout venant démarre le moteur et alimente le guindeau, moteur stoppé.
L'inconvénient des forums, c'est que tout le monde peut venir y raconter des conneries et passer pour un génie auprès des ignorants.
Pour ce qui est du souci de "fatiguer" l'alternateur de par le fait de la faible résistance interne des batteries LFP il y a cette video ou il met un chargeur DC/DC entre l'alternateur et la batterie LFP.
Mais à nouveau, si le risque est que l'alternateur soit niqué peut-être à un moment dans le futur l'autre solution est de le considérer comme une pièce d'usure et d'en garder un en réserve vu que le prix n'est pas exhorbitant. Apparement le risque est qu'il surchauffe. Ca pourrait d'avantage être un problème dans les régions chaude que dans les régions froides ou le compartiment moteur est baigné au bain marie dans de l'eau à moins de 20 degrès.
Après avoir ajouté 6 heures de potassage de l'info trouvée sur le net j'en reviens au plan "drop in" d'une batterie LFP avec BMS incorporée tel qu'on les trouve sur Amazon ou équivalent dans un circuit pour batterie plomb préexistant.
Donc le profil du type qui a par exemple 3 batteries plomb. Une pour le moteur et deux comme batteries de services. Les batteries plomb de services sont récentes, et, pour l'avancement de la science par expérimentation, ce type décide d'ajouter une batterie LFP avec BMS intégrée qu'il a acheté sur Amazon. Il la fiche en // avec ses batteries plomb sans autre forme de procès, avec zéro modifications à son circuit existant qui est ultra simple et n'inclu pas de solaire. Le circuit électrique standart d'un bateau des années 1980, avec chargeur de quai et alternateur comme source de chargement de ses batteries.
Que devra-t-il vérifier ?
Après mes 6+ heures de visionage et de lecture, cela donne ceci:
1) La façon dont son alternateur réagit à la résistance interne faible de sa nouvelle batterie LFP comparée à celle des plomb existantes. Les plombs ayant une résistance interne plus élevée et donc solicitant moins l'alternateur. Un alternateur de bateau au contraire de celui d'une voiture est mal ventilé donc le risque est la surchauffe et à terme sa défaillance. Pour cela il pourrait acheter pour 20 EUR sur Amazon un thermomètre infrarouge et faire des mesures de la temp. de son alternateur avant l'insertion de la batterie LFP et après. Cela idéalement dans des situations défavorables, moteur chaud, batteries fort déchargées etc. Ses trouvailles devrait lui permettre de décider ou non si une régulation de l'ampérage de charge est nécessaire ou non, par exemple via un chargeur DC to DC afin de soulager son alternateur et donc sa temp de fonctionnement.
2) une autre chose qu'il pourrait vérifier avant l'installation de sa LFP "Amazon" avec BMS incorporé est la tension de charge que donne son alternateur et son chargeur de quai. La tension de départ de son alternateur devrait être 14,4V +/- (c'est mon cas). Si elle excède 14,5V on arriverait à une tension trop élevée et le BMS de la LFT "Amazon" risque d'intérrompre la charge.
Idem pour le chargeur de quai. Pour le chargeur de quai, dans mon cas sur la durée il charge à une tension de 13,7V. Ca c'est suffisament bon pour une LFP. Certains charge à 13,2V se serait un peu bas, ne permettant pas de charger la LFP au dela de +/- 75%.
3) Un type sur le ponton A lui explique que son chargeur de quai prévu pour charger une batterie plomb qui charge à 13,7V n'est pas bon pour sa batterie LFP car la courbe de charge ceci, la LFP charge au début idéalement à tension fixe et par la suite à courant fixe etc...etc....Victron machin ceci....$$$$ cela....et qu'en conclusion ça batterie LFP achetée 270 EUR aura sa durée de vie en cycles limitée à 80% voir 70% de sa durée de vie optimale car il n'a pas investi dans ++++++++ EUR de bazar Victron et autre. Notre type l'écoute et se dit que temps que son bateau ne crâme pas, si sa batterie à 270 balles dure un peu moins longtemps car il n'a pas investi dans plein de trucs "dispendieux" son calcul n'est probablement pas si mauvais.
4) Le même type lui dit que son alternateur va lacher pour cause d'arrêt brutal du chargement de la LFP qui va causer un pic d'intensité et crâmer les diodes de son alternateur. Cette info est mitigée par un deuxième type, celui du ponton C qui lui dit que sont installation "drop in" va sur ses 3 ans et qu'une telle panne d'alternateur n'est toujours pas survenue. "As the jury is still out on that one", il décide d'avoir un alternateur d'avance au cas ou et de voir ce qu'il se passe "pour l'avancement de la science". L'alternateur "d'avance" lui coûte 200 EUR port compris, il le garde dans un équipet, bien au sec..
5) Reste le point le plus important, à savoir pas la santé de son alternateur ni de sa nouvelle batterie LFP à 250-300 EUR mais celle de lui-même, de son bateau et de ses voisins de ponton.
A cause de la faible résistance interne de sa nouvelle batterie LFP, le courant mesuré en A lors du processus de charge est bien plus élevé qu'avec les plombs d'origine. Cela signifie des connections plus chaudes etc. En préalable il décide de changer ces cables et soigner les connections. Sa caméra infra rouge lui donne une idée de ce qu'il se passe au dela de l'éventuel échauffement de son alternateur. Sur ce point il écoute un peu plus attentivement l'anxieu du ponton A car l'enjeu est le seul vraiment important & note de se renseigner davantage sur les risques encourus.
6) Le type anxieu du ponton A lui a aussi dit que mettre en // des plombs avec une batterie LFP ne fonctionnerait pas car la LFP ayant une tension "float" plus élevée que celle des batteries plomb (13,2V contre +/- 12,7V) la LFP se déchargerait en continue dans les batteries plombs. En pratique notre type constate que les plombs se stabilisent en pleine charge à 13,2V, le voltage floating de sa LFP et que le transfert de la LFP vers les plombs sur la durée est vraient minime, pas suffisament significative pour en faire tout un fromage.
Donc en conclusion notre type laisse ouverte la seule question vraiment importante qui pourrait l'amener à investir dans des machins Victron et autre "dispendieu" trucs, à savoir si la faible résistance interne à la charge de la LFP pourrait être à la source d'une surchauffe qui pourrait créer un départ de feu dans son bateau. Autre souci pourrait être la protection nécessaire en cas de défaillance d'un BMS interne de batterie LFP qui n'est, à l'origine, pas vraiment prévu pour une longue vie dans un bateau présumé un poil humide, surtout en hiver. Pour le reste le choix final de sa batterie LFP avec BMS incorporé se fait sur la qualité de ce BMS par rapport à l'info à sa disposition, qui en ces temps moderne est fort importante. Dernier détail, l'emplacement de ses batteries, sous la couchette de quart, est assez considérablement plus haut que les fonds du bateau ou il se trouve parfois de la flotte. Il soigne aussi son caisson pour le tenir hors eau le plus longtemps possible en cas de pépin.
Voila, fin de l'histoire, commentaires constructifs et précis dans leur argumentaire étant bien venus.
@ Pierre3
je ne sais pas pas ce qu'est une tension float pour une batterie ; on parle soit de sa tension au repos (deconnectée) soit de sa tension en cours de décharge soit de sa tension en charge. En charge le mode float du chargeur est utile pour une batterie plomb car il compense l'autodécharge inhérente à ce type de chimie. Il n'y en a pas besoin sur une batterie LFP car ce phénomène d'autodécharge est infime sur une courte période. Est ce dangereux de charge une LFP sur un chargeur qui a un mode float ? Je ne pense pas vraiment si la tension de float ne dépasse pas la tension max admissible par les LFP mais si quelqu'un a de la littérature là dessus je suis preneur (il y en a un peu dans les articles ci-dessous.
J'ai déjà dit le mal que je pensais d'un BMS qui est utilisé comme "coupure de fin de charge tous les jours". Ce n'est pas son rôle, il n'est pas dimensionné pour ça.
il y a sur un autre fil récent le numéro de Practical Boat Owner de juin 2024 qui a un long article ( en fait 3) sur les LFP qu'un autre Heonaute a mis (merci à lui). Lire de la page 56 à 63 'c'est en anglais.
Je suis en cours de conversion aux LFPs et cet échange m'intéresse pour le chargement de mes cellules via l'alternateur.
Sur mo bateau mon moteur est équipé de deux alternateurs. 1 pour la batterie moteur et un pour les servitudes.
Donc j'ai compris qu'un DC/DC entre deux types de batteries (LFP / Plomb ou autre) faisait l'affaire lorsque le BMS coupe la charge à la tension fixée.
IL y aurait aussi l'installation d'un relais e couplage d'après Fritz.
Bonjour et merci Pierre3 pour le débat, qui arrive à un bon moment pour moi. En effet chaque fil pris independament est relativement lourd à intégrer mais contient des éléments intéressants et instructifs. Celui ci l'est particulièrement.
Les BMS des batteries envisagées ici sont souvent de 100ah.
Peut on me confirmer qu'avec 2 batteries en parallèle, donc deux BMS de 100, on obtient 200ah disponibles pour demarrer le moteur (un diesel de 750cm3 ne doit pas demander plus?).
Sinon dans ces gammes il faut passer à 200ah en une batterie pour espérer avoir un BMS de 200.
Merci bonne journée
Sur le catalogue AD, il y a le bloc d'extension lithium LE300 depuis 3 saisons, je suppose que le principe a dû faire ses preuves.
Peut-être y a-t-il un BMS spécifique, ils recommandent un rapport de puissance Li/Pb de 1/3 et ont pensé au préchauffage du Li par temps froid. Mais cela ressemble plus à un système épaulant une batterie plomb plus qu'à deux parcs type démarrage/utilitaire.
Mes BMS supportent en pointe 350A alors qu'en continu c'est 200A.
Une remarque générale concernant les fils techniques HEO. Il y a en beaucoup mais la qualité/densité de l'info est souvent médiocre car beaucoup d'interventions sont fait au lance-pierre, sans description du cadre qui les amène à cette remarque, ni même le minimum de précision qui permet de rendre le commentaire lisible.
Alors on est tous libre d'intervenir ou pas mais on peut choisir d'intervenir peu mais bien et de manière complète. Ca multiplierait la qualité de l'info disponible sur HEO par trois du jour au lendemain sans soucis.
Pour répondre à Pierre3 et en général :
je suis d'accord avec lui et c'est un peu saoulant de voir des post péremptoires "j'ai monté ça sur mon bateau et ça marche".
Passez n'importe quel examen en physique ou d'éléctricité et affirmer ce genre de truc, et vous aurez zéro.
J'essaie pour ma part d'expliquer un peu (j'ai quand même 35 ans de développement des systèmes électriques , mécaniques, électromécaniques, sur les avions bleus derrière moi) .
Pour être clair :
mettre en parallèle un batterie Pb et une batterie LFP chargées par l'alternateur, c'est une connerie d'un point de vue physique. Aucune batterie n'est véritablement bien chargée et s'use plus rapidement que prévu; L'alternateur s'use aussi
Ne pas comprendre ou admettre que 0.2V de différence au repos entre 2 batteries chargées, c'est ENORME pour des batteries
Utiliser un BMS pour réguler une fin de charge, c'est une immense connerie, et cela peut être dangereux (les MOSFET peuvent avoir grillé mais vous ne le saurez pas et quand vous en aurez besoin pour un vrai pb : plus rien !!!)
Une LFP ne débite pas beaucoup parce qu'elle a une faible resistance interne, comme affirmé plus haut mais parce que sa résistance n'augmente pas fonction de son taux de décharge contrairement aux batteries plomb.
Perso je préfère faire une archi qui respecte les lois de la physique, peut-être un peu plus cher mais pas de beaucoup à l'achat, mais qui sont pérennes, que des architectures qui marchotent un temps plus ou moins long et qui sont nettement moins secure. Je n'ai pas les moyens d'acheter pas cher comme on dit.
après Pierre 3 écrit :
"Une remarque générale concernant les fils techniques HEO. Il y a en beaucoup mais la qualité/densité de l'info est souvent médiocre car beaucoup d'interventions sont fait au lance-pierre, sans description du cadre qui les amène à cette remarque, ni même le minimum de précision qui permet de rendre le commentaire lisible."
T'es quand même un peu gonflé !!! C'est toi qui a ouvert ce fil. Certains dont moi essaient d'expliquer un peu et y passent du temps; alors ne crache pas trop dans la soupe.
Naviguez bien quand même la belle saison arrive
Mon impression est qu'il faudra probablement encore au minimum 5 années de recul sur les installations LFP sur nos bateaux pour identifier les vrais risques des risques supposés ou théoriques en fonction du type d'installation. La théorie c'est bien, les retours de terrain c'est mieux
Pour ce qui est des risques supposés, nous sommes dans un alignement presque parfait de toutes les planètes. A savoir une société ou la tolérance au risque est très faible, ou l'anxiété est entretenue à des fins commerciales, ou les différences entre les types de chimie lithium sont souvent mal comprise (ceci à nouveau une aubaine pour les vendeur de matériel), on ajoute à cela une certaine xénophobie pour tout ce qui vient de Chine de la part d'un occident qui perd un peu les pédales et qui se cherche et tous les ingédients sont la.
Dans le futur je lancerai (si pas déjà fait) un autre fil Lifepo4 sur HEO afin d'essayer de se faire une idée du type de protection et de contrôles auxquels on peut raisonnablement s'attendre de la part des BMS incorporés de batteries Lifepo4 "chinoises & bon marché" telles que vendues en ligne. Comment peut-on faire la part des choses entre les bons et les mauvais BMS incorporés, par rapport aux caractéristiques techniques fournies ou non par les fournisseurs, l'info trouvées sur Youtube ou autres sites etc.
le creabest (chinoise avec cellules no name) est plus chère mais au moins il y une fiche technique avec un BMS correctement dimensionné avec équilibrage.
Je ne sais pas si c'est une bonne batterie mais au moins le design décrit dans la fiche technique est cohérent et respecte les fondamentaux électriques.
La technologie Li est à disposition du "grand public" depuis relativement peu de temps. Quand on analyse un tant soit peu son évolution, on s'aperçoit que des sociétés aussi puissantes que les constructeurs aéronautiques, de matériels informatiques, de téléphonie etc ont subi pas mal d'avanies avant d'arriver à des applications fiables.
Des correctifs sont encore en cours sous la pression des compagnies d'assurance qui en ont assez de voir des rouliers anéantis pour cause de transport de véhicules électriques, d'une technologie Li qui en principe ne nous concerne pas, mais au niveau réglementaire, personne ne fait de distinguo entre les différentes composition de batteries Lithium.
Les fiches techniques des matériels que nous utilisons sont parfois incomplètes, ambigües et il est fréquent que leur intérêt passe souvent après la variable prix.
Ajoutons le niveau de compréhension que peuvent avoir des amateurs face à ce qu'ils entreprennent sur des circuits TBT ou l'on peut mettre ses doigts un peu partout.
Je veux en venir au fait qu'avec toutes ces incertitudes, il n'est pas interdit de procéder par approches successives dans nos installations, de constater que "ça marche" depuis X mois et d'avoir l'honnêteté de dire quand ça marche moins bien voire plus du tout au bout de 2X mois. Mais il va falloir en effet quelques années.
Bonjour,
Je viens de trouver ce long fil... Nous achevons la construction amateur d'un voilier de voyage qui est équipé de batteries LiFePO4 (bord, électronique, ...) et Pb-AGM (moteur, guindeau). Dans le cas où cela serait intéressant, ci dessous quelques éléments de technique et les rationnels de ces choix supportés par plusieurs tests grandeur nature. Par avance, toutes mes excuses pour la longueur du post et sa relative technicité.
A plus,
SmoothF
A considérer concernant les LiFePO4 :
Ne supportent pas la charge en dessous de 0°C (parfois -5°C pour certaines). Certains BMS intègrent cette composante, d'autres non... Il est nécessaire d'avoir cette information si un élément de charge reste opérationnel lorsque le bateau hiverne ou que l'on se trouve en région froide.
Résistance interne très faible (ordre de grandeur: 1/10 à 2/10 d'une batterie plomb de même capacité) :
- Un court circuit à des effets spectaculaires compte tenu du courant de court circuit (très facilement >1000A). Les étages de sortie des FETs d'isolation ne sont parfois pas assez rapides et rendent l'âme. Pour les non bricoleurs : batterie HS ; pour les autres: analyse + schéma + remplacement + essais sur des cartes assez complexes.
- En général, la rupture des FETs d'isolation laisse ceux-ci non passant (résistance très élevée) coupant le courant. Considérer qu'il n'y a donc aucun risque d'établissement d'un courant relève cependant du mythe : il est fortement conseillé d'inclure un fusible de forte capacité (200A à 400A semi-rapide) qui assurera une protection dans tous les cas. Un problème dans ce cas est le démarreur ou le guindeau dont les courants d'appel (inductance) peuvent dépasser ces valeurs...
- Le courant de charge va nettement augmenter à tension équivalente. Pour l'alternateur, cela implique une puissance de charge nettement plus importante et une augmentation de température significative (la puissance dissipée varie avec le carré du courant: P=RI²). Les régulateurs intégrés ont souvent une compensation en température pour moduler la charge d'une batterie plomb classique (la résistance interne d'une batterie plomb diminue avec la température, le régulateur fixant une tension de sortie, celle-ci doit être réduite lorsque la température augmente : 3mV/°C) mais cette réduction est trop faible pour limiter le courant de charge d'une batterie à faible résistance interne. Il n'est pas rare que le pont de diode de l'alternateur rende l'âme ; les résultats sur la température du bobinage du stator sont aussi intéressant : dégradation du vernis d'isolation avec des conséquences funestes.
Ont des caractéristiques de charge et décharge très éloignées des batteries plomb tant en tension qu'en courant. ceci est dû à la nature des réactions d'oxydo-réduction impliquées et leur variation en fonction de la charge, la température, le courant, la tension, ... Le problème est fort complexe et sa description est un sujet en soi. Pour faire simple:
- LiFePO4 : charger à un courant fixe (de préférence 0.5C ; c'est à dire 50A pour une 100Ah) jusqu'à atteindre un voltage spécifique dépendant finement de la batterie (3.65V ; précision meilleure que 0.05V), puis garder ce voltage jusqu'à ce que l'intensité diminue à une certaine valeur minimum.
- Plomb : courbe de charge en plusieurs étapes type 'courant limité / absorption / entretien' que l'on peut trouver sur la plupart des chargeurs de puissance. Complètement différent des LiFePO4.
Note sur les BMS internes coupant la batterie
- Ce sont des organes de protection ultimes ; ils ne doivent pas être utilisés comme régulation de charge.
- Il est à noter que la coupure de la batterie met dans une certaine mesure 'dans le noir' le bateau ; cela peut être assez intéressant dans certains cas proche d'une côte ou en navigation de nuit.
- Lorsque la batterie se coupe, une brève (mais notable) transitoire de tension apparaît sur le 12V. Elle peut endommager certains appareils électroniques et des ampoules un peu fragiles. Voir la partie 'Transitoire de tension et protection de l'alternateur et des composants du bateau' ci dessous.
Choix LifePO4 ou Plomb vs application:
Moteur et guindeau :
- Plomb pour assurer simplicité, robustesse et facilité de mise en oeuvre. Parfaitement adapté car cette batterie n'aura pas de décharge profonde (elle sert juste à démarrer le moteur et à tamponner le guindeau à poupée horizontale qui ne tourne qu'avec le moteur en route ; rechargée en ~15min max). Sert de batterie de secours en cas de défaillance de la batterie du bord (GPS, feux de mat, VHF).
- AGM : pour la sécurité ; pas de fuite d'acide lorsque les barres de flèches viennent dire bonjour à l'élément liquide (vécu).
- Circuit indépendant de la batterie du bord : alternateur séparé avec régulateur externe spécifique pour une batterie Plomb-AGM. Les régulateurs intégrés ne sont en général pas adaptés : même si la tension de charge est adéquate (14.4V pour charge bulk), ils n'offrent pas de passage en idle à 13.8V au bout d'un certain temps ce qui peut se produire lorsque l'on utilise le moteur de façon importante (c'est le cas au Nord dans les conditions anticycloniques établies sur parfois plusieurs semaines).
- Suivi de charge et décharge par un simple coulombmètre à 25€ (mesure courant et tension simultané, calcul de puissance et capacité restante de la batterie) ; simple et pratique.
Bord :
- LiFePO4 pour limiter la masse tout en augmentant la capacité exploitable. Une batterie plomb permet rarement une décharge supérieure à 55% de sa capacité (et encore, à condition de mettre en oeuvre la bonne technologie) ; il est (très) rare de pouvoir la charger à 100% ; la moyenne de charge est de l'ordre de 92%. Une batterie LiFePO4 permet d'exploiter environ 80% de sa capacité et peut être chargée à 95% de capacité. Une batterie LiFePO4 à une masse deux fois plus faible qu'une plomb à même capacité.
- 4 cellules LiFePO4 indépendantes
- BMS externe permettant de piloter deux relais bistables de charge et décharge ainsi que les ordres de fin de charge. Le relais de charge ne commute normalement jamais : c'est un moyen de protection de surcharge ultime. L'ordre de fin de charge est disponible sur une sortie distincte qui donne l'ordre de couper les moyens de charge (tous, quels qu'ils soient). Le relais de décharge peut commuter si l'on approche du seuil de décharge maxi ; il protège la batterie des sur-décharges.
- Circuit de charge et décharge indépendants de la batterie moteur : alternateur et autres moyens de charge séparés ; circuit de décharge séparé. (électronique, pilote, éclairage, ...)
- Régulateur d'alternateur externe assurant une caractéristique de charge adaptée tant en courant qu'en tension (mesurée sur la batterie et non l'alternateur) tout en protégeant l'alternateur en température. Pour ceux qui sont intéressés, voir le blog arduinoalternatorregulator.blogspot.com[...]/ qui est une mine sur le sujet. C'est complexe, mais cela devient nécessaire lorsque l'investissement batterie est important et/ou que l'impact d'une panne d’énergie devient très problématique.
Transitoire de tension et protection de l'alternateur et des composants du bateau:
La déconnexion intempestive d'une charge sur un système de charge (à fortiori un alternateur) est connue dans l'électronique de puissance sous le vocable 'load dump' (rupture de charge). Très documenté et bien compris/géré depuis les années 70-80.
La protection du load dump existe dans bien des alternateurs postérieurs à 1980 sous la forme de diodes avalanches sur le pont de redressement de l'alternateur (6 diodes montées en redresseur triphasé). Pratiquement, ce sont des diodes ayant un comportement de diode zener et construites pour amortir les excursions de tension, typiquement à 25-30V pour des systèmes 12V. Il suffit de demander au fabricant de son alternateur si tel est le cas. Bon, c'est parfois un peu pénible de trouver l'information (ou plutôt de persuader le fournisseur du moteur de la donner ou de donner la référence du fabricant ; expérience vécue).
Il n'en reste pas moins qu'une transitoire de tension de l'ordre de 25-30V va apparaître (beaucoup plus en fait pendant quelques micro secondes). Elle peut avoir des effets délétères sur certains appareils électroniques (consultez les spécifications d'alimentation de vos électroniques ; il y a rarement des informations sur la gestion des transitoires ; les documentations des systèmes conçus dans l'automobile sont les seules pour lesquelles j'ai systématiquement trouvé ces informations).
Des systèmes externes existent (voir le APD12 de chez Sterling Power / sterling-power.com[...]-device )... Pour les créatifs, on peut aussi s'appuyer sur les TVS type PAR 6KA24 (attention à l'énergie à absorber ; elle peut être assez élevée lorsque les alternateurs atteignent 80-100A ; montage en parallèle requis). Atténue la transitoire mais ne l'élimine pas !
La meilleure solution est encore de ne pas avoir de rupture de charge !
La solution robuste est de forcer le régulateur à ne pas charger lorsque la batterie est pleine :
- Certains régulateurs externes ont une entrée 'enable' : c'est ce qu'il y a de plus fiable lorsque l'on a un BMS externe ou un interne qui donne l'information 'batterie pleine'.
- Réglage de la tension de charge maxi un peu plus bas que le déclenchement du BMS ; exige en général un régulateur externe.
- Alternative pour les bricoleurs : modification du régulateur interne pour que sa mesure de tension soit rapportée à la batterie avec éventuellement un pont diviseur et un bon multimètre (précision 0.01V) ; réalisé en démo pour comprendre comment cela marche avec un régulateur interne spare acheté pour l'occasion ; voir les références plus bas)
Une voie qui demande plus (beaucoup plus !) de connaissances est la conservation d'une charge lorsque le BMS ouvre le circuit de charge :
- Certains mettent en parallèle une batterie type plomb : c'est possible mais assez 'capillotracté' voire dangereux de part les différences des deux chimies. Cela tend à ruiner les deux batteries plus ou moins rapidement (charge partielle LiFePO4 pour protéger la Pb, décharge de la LiFePO4 dans la Pb, courants non négligables entre Pb et LiFePO4 pendant l'équilibrage, ...) et réduit significativement l'avantage du batterie LiFePO4. L'analyse conduit généralement à 'laisser tomber le LiFePO4' ou à 'faire ce qu'il faut pour que cela fonctionne correctement' => plus compliqué que juste un 'drop-in'. A noter : le courant d'équilibrage est parfois très important ; certains BMS internes vont switcher OFF pour protéger la batterie LiFePO4 et eux même (les FETs ont une capacité maxi). Cela conduit généralement à ce que la batterie Pb reste en place et assure la fourniture électrique jusqu'à ce que le BMS interne commute à nouveau (certains sont automatiques) ce qui conduit à la répétition du scénario ou alors, si le BMS reste OFF, à ce que la batterie Pb se vide complètement et perde ainsi sa capacité. Dans le cas où le niveau de protection n'est pas atteint, le courant de circulation dans les deux batteries les amènent à chauffer ce qui est préjudiciable voire dangereux pour les deux. Si pas de protection, alors BMS HS et bricolage assuré.
- Plus rare, bricolage d'électronicien : FETs de commutation rapide (très rapide) devant la batterie plomb permettant de la switcher lorsque la tension dépasse 15V (une batterie LiFePO4 se charge aux alentours de 14.6V (3.65V * 4 éléments). En général, un bon électronicien évitera de manipuler des transitoires hautes énergies et se tournera plus vers le régulateur (voir la modification du régulateur interne) pour gérer le problème.
Discussion autour des technologies:
Le LiFePO4 est une technologie particulière qui demande une cohérence globale pour son exploitation et garantir d'en tirer réellement profit. Les circuits de charge et décharge doivent être adaptés.
- Systèmes/technologie de charge spécifiques LiFePO4 tant pour l'alternateur que le chargeur du bord et autres panneaux solaires, hydrogénérateurs ou encore aérogénérateurs (éolienne). Le cas de l'éolienne est intéressant car il est plus simple de réguler une éolienne pour une LiFePO4 que pour une plomb : diode schotky avec relais de mise en rideau commandé par le BMS.
- Circuit de décharge indépendant pour assurer la protection de la batterie (la sur-décharge est funeste).
- Système de suivi de charge/décharge et de protection communicants : ce sont les BMS ; lorsque l'installation dépasse le simple véhicule
Passer du plomb au LiFePO4 est...
- Difficilement possible sans modification en profondeur d'une installation existante : il faut souvent revoir les systèmes de charge, scinder les circuits, ...
- Généralement abandonné lorsque l'on examine rationnellement toutes les implications et le coût. Les discussions auxquelles j'ai participé se sont quasi immanquablement achevée par :'en fait, cela ne vaut pas trop le coup' excepté pour les cas où il s'agissait d'une refonte complète d'une unité.
- Demande beaucoup de documentation et de lecture pour éviter les surprises (en particulier les désagréables). L'information est disponible auprès des grand fabricants de batterie LiFePO4 ainsi que de nombreuses publications (en anglais la plupart du temps).
Références:
Le blog arduinoalternatorregulator.blogspot.com[...]/ : Al Thomason a mis au point un régulateur d'alternateur fort intéressant. Les specifications sont à lire ; c'est ce qui fait que l'alternateur chargera correctement une batterie de forte capacité en sécurité tant pour la batterie que l’alternateur et les occupants du bateau. Il est open source pour ceux qui sont intéressés ; une version commerciale existe aussi.
Énergie sans limites de Reinout Vader (www.victronenergy.fr[...]-FR.pdf ) : une publication de Victron. OK, Victron est 'cher' mais il y a de très bonnes infos techniques sur leur site dont la lecture permet d'éviter de grossières erreurs, de perdre l'investissement réalisé et bien plus , d'éviter de se retrouver en situation délicate en navigation que ce soit au large ou proche des côtes, sous nos latitudes ou dans des endroits plus exotiques que ce soit Nord ou Sud. Après cela, on peut fabriquer soi même, se procurer l'équivalent, etc... mais au moins, on a des bases.
Documentation Winston-ThunderSky (fabricant Chinois) : Operator's Manual
shop.gwl.eu[...]/ : un revendeur plutôt orienté solaire mais donne une bonne idée des batteries LiFePO4 et de composants qui vont autour.
www.rec-bms.com[...]/ : un exemple de BMS externe bien construit
Pour ceux qui veulent bricoler leur régulateur d'alternateur ; une source pour acheter un spare pas trop cher que l'on peut ouvrir et modifier à loisir : www.condensateur-web.fr[...]33.html . A titre indicatif, on peut en trouver ici un remplacement de ponts de diodes: www.condensateur-web.fr[...]06.html ; pas donné.
BEAU DEVELLOPEMENT !
Ok avec quasimment tout ce qui est dit.
Tu vas ecoeurer tous ceux dans ce fil qui veulent acheter un lifepo4 la moins chere possible et la mettre a la place de leur vieille batterie plomb sans rien chqnver d’autre pour eco omiser 3 francs 6 sous !!!
Réponse @RedSky (aux commentaires du post précédent) : ci dessous ; quelques notes de 2022 pour éclairer les propos et les conditions de tests réalisés sur un assemblage batteries hétérogène.
Tests sur parc hétérogène LiFePO4-Pb
- Objectifs :
- Démonstrateur réalisé suite à discussion avec un collègue sur le comportement d'un parc de batteries hétérogène.
- Discussion et essais datant de 2022 lors du choix et implémentation du système de charge de notre voilier. Le collègue pensait que l'on pouvait envisager une architecture limitant les effets des 'load dumps' sur la base d'une batterie tampon.
- Désolé pour la concision ; les tests sont anciens et avaient une vocation ludique
- Disclaimer et biais des tests :
- Les tests ont été réalisés avec un chargeur avec settings LiFePO4 donc chargeant à 14.5V : impensable pour la durée de vie de batteries Pb (13.8V max) ; évaporation progressive de l'électrolyte.
- Il est possible de charger à plus basse tension (13.8V par exemple) pour limiter l'impact sur la Pb mais cela donne un taux de charge des LiFePO4 de l'ordre de 40%. Pas trop d'intérêt en ce cas de s'équiper de LiFePO4 coûteuses et plus complexe à manipuler que des Pb.
- L'idée principale du test était de démontrer la non viabilité de l'approche...
- Maquette :
- LiFePO4 : 200Ah Winston (4 cellules) ; peuvent supporter une décharge à 3C ; 4C max.
- Pb 1 : Exide Dual-AGM 92Ah quasi neuve
- Pb 2 : Varta 74Ah AGM Start/Go retirée d'un véhicule car ne tenant pas la charge
- Chargeur : Skylla IP65 multi chimies ; settings LiFePO4 14.5V - 70A max
- Câblage en 35mm2
- Matériel de mesure : pince ampèremétrique 600A et voltmètre indépendants. Matériel contrôlé en labo.
- Modélisation rapide de l'ordre de grandeur des courants de la manip sur la base des résistances internes des chimies et des données constructeur LiFePO4 (Winston) et publications sur les Pb. Calcul montrant que le courant ne dépasserait sans doute pas 2C sur la LiFePO4 200Ah chargée à 70%.
- Premier test avec Exide 92Ah
- Pb: état de charge incertain ; tension au repos 12.42V
- LiFePO4 chargée à 70% ; tension au repos 3.39V*4=13.56V
- A la mise en parallèle, baisse de la tension des cellules LiFePO4 à 3.3V ; courant instantané de plus de 60A (arcage à la connexion)
- Charge à 14.5V-68A pendant 15min ; durée faible pour ne pas détruire la Pb à tension franchement trop élevée
- Observation de la décharge pendant 10-15min ; augmentation progressif du courant de circulation. Arrêt de la manip passé 35A.
- Second test avec Varta (le lendemain)
- Pb: charge vraisemblablement faible ; tension au repos 12.21V
- A la mise en parallèle, courant de l'ordre de 50A.
- Charge à 14.5V-65A pendant 15min (durée toujours faible bien que la Pb soit déjà assez mal en point)
- Observation de la décharge pendant 5-10min ; augmentation du courant de circulation. Arrêt de la manip passé 30A.
- Analyse et critique
- Test trop court et pas réaliste : la Pb implique une baisse de la tension de charge si l'on veut la maintenir en bon état pendant un certain temps ; aucun intérêt alors de mettre en place une LiFePO4 car taux de charge ridicule.
- Le comportement observé est logique : rapport des résistances internes des batteries de l'ordre de 5 à 10 et déséquilibre des tensions lorsque les batteries débitent.
- En attendant suffisamment longtemps, la décharge de la LiFePO4 dans la Pb aurait sans doute conduit à l'équilibrage
- La résistance interne de la Varta est plus importante que l'Exide ; comportement initial logique ; interrogation sur l'impact sur un temps plus long (évolution de la résistance interne d'une batterie HS).
- Les courbes de décharge Winston donnent une tension en décharge 1C de 3.2V et 3.3V à 0.5C ; le courant de circulation de l'ordre de 40A est cohérent avec une charge d'une Pb assez déchargée aux alentours de 13V (test rapide avec une alimentation de puissance de labo à 12.9V => limitation à 30A)
Notes de 2024 :
- Test réalisé sans BMS ; un BMS interne pourrait éventuellement couper le courant si trop élevé
- Si le test avait été réalisé avec des batteries ayant des niveaux de charge permettant de les placer en parallèle initialement sans trop d'impact et que la charge avait été réalisé à plus faible tension, il est fort probable que les courants de circulation auraient été plus faibles (tension de débit d'une LiFePO4 Winston chargée à 30%).
- L'intérêt d'un parc hétérogène LiFePO4/Pb reste toujours mystérieux d'un point de vue éfficacité
- Bilan du test : installation d'un système articulé sur l'absence de load-dump ; vérification de la présence de diodes avalanches sur les alternateurs si défaillance d'un élément de la chaîne de commande
M'intéressant toujours d'avantage au retour de terrain d'utilisateurs curieux & observateurs et à ce qui reste lisible par la toute grande majorité des héossiens amateurs totaux en "machins électriques" (moi y compris) voici mes trouvailles de cette matinée:
Alors pour la raison pour laquelle remonte souvent des exemples ou des BMS de batteries "chinoise & bon marchés" sont à même de fournir un courant largement au-dessus des 100 A annoncés dans les spécifications techniques "de base", j'ai trouvé un exemple ici:
Full TEST Charge/Discharge and max BMS load for LiTime 12V 100Ah LiFePO4 Battery
Cela a été confirmé par le manuel d'utilisateur de cette batterie. A savoir que pendant un court instant (5 secondes) les valeurs de courant peuvent largement excéder la limite de 100 ampères souvent évoquée sur HEO.
Aussi la valeur de 100A est une valeur conservative ("cover my ass") donné par les fabriquant, dans l'exemple ci-dessus la batterie fourni 180A largement au dela de 5 secondes.
En ce qui concerne la nécessité ou non de protéger l'alternateur par un chargeur DC to DC, ça dépendrait bien entendu du type d'alternateur, ceux des gros "Vans" (camionettes) ont souvent une protection température qui limite le débit de courant en cas de surchauffe, dans nos bateaux ça ne sera pas le cas. Comme souvent il y a un écart entre la théorie et la pratique du fait des tolérances, de la relative sous-utilisation de nos bateaux par rapport à l'utilisation prévue de ces alternateurs dans des véhicules, le chargement alternatif via panneaux solaires etc pourrait expliqué les cas de "bonne tenue" des alternateurs confrontés au batteries lifepo4.
Un commentaire intéressant que j'ai trouvé à propos de la longue durée de survie des alternateurs branché en direct sur des batteries Lifepo4 était simplement le sous dimensionnement des cables et la mauvaise qualité des connexions, donc le visionnage de son installation au moyen d'un thermomètre infra rouge à 20 EUR de chez Amazon que j'ai déjà évoqué plus haut prend vraiment tout son sens à la lecture de ce commentaire.
C'est en fait ce que j'aimerais voir sur Youtube mais n'ai pas encore trouvé, donc à défaut je le ferai moi-même à un moment dans le futur , à savoir un un type qui "loin des grands discours et des grandes théories" comme dirait JJ Goldman (donc approche + "à l'anglo-saxonne"), mesure avec un thermomètre infra rouge la température de fonctionnement de l'alternateur en chargement + mesure du courant avec une pince ampèremétrique avec son circuit batteries de servitude 100% plomb, ensuite retire une plomb et met une lifepo4 à la place sans aucune modification de circuit et refait le même test. Ensuite si points chauds constatés au niveau du cablage et connections via cet examens infrarouge, il refait le même test quand ces points ont été améliorés.
Si je devais intégrer une Lifepo4 type "Li time" de l'exemple ci-dessus dans mes batteries de servitude demain je ferais exactement cela. Ensuite, ces mesures prises, j'intercallerais un chargeur DC to DC entre mon alternateur et les batteries de servitudes, notament pour l'info en Bluetooth que cet equipement me fournirait, pas uniquement pour protéger mon alternateur et prevenir tout les dangers liés à la capacité du lifepo4 d'absorber + de courant à la charge en comparaison avec le plomb.
Pour ce qui de la puissance du chargeur DC to DC qu'on recommande (encore une info trouvée sur le net ce matin), on recommande 50% du courant de charge indiqué pour l'alternateur.
Par exemple dans le cas de mon moteur, un nanni 4.220HE, l'alternateur est un Valeo 60A, donc le chargeur DC to DC à placer entre cet alternateur et les ou la batterie Lifepo4 devrait avoir une puissance de 30A (ce qui recoupe un peu l'info trouvée sur HEO comme quoi la vrais valeur du courant dévivré en continu par nos alternateurs correspond à +/- 50% de la valeur théorique).
Autre information trouvée ce matin en écumant Youtube, la résistance interne des batteries AGM est déjà bien moindre que celle des batteries plomb classiques (+/- 2 milliohms comparé à une valeur comprise entre 10 et 30 milliohms pour les batteries plomb classique). Pour le lifep04 on parlerait de 0.2 milliohms, donc la batterie AGM se trouverait en quelque sorte à mi chemin entre le "plomb" et le "lifepo4" pour ce qui concerne cette valeur.
Cela voudrait dire que passer un plomb au lifepo4 ou de l'AGM au lifepo4 sur son bateau ce n'est pas exactement la même chose. Le "saut" est plus important en passant du plomb vers le lifepo4 pour tout ce qui est lié à la problématique de la résistance interne des batteries.
Pour les personnes faisant du visionnage de video Youtube afin de mieux comprendre la technologie de batteries de chimie Lifepo4, la lecture des commentaires en apprend au moins autant que le contenu des vidéos elles-même, le ton y est la plupart du temps courtois et pragmatique, souvent une marque de fabrique des échanges entre anglo-saxons, ce qui contribue à la densité de l'information qu'on peut en tirer.
@Smoothfroggy :
"Il est possible de charger à plus basse tension (13.8V par exemple) pour limiter l'impact sur la Pb mais cela donne un taux de charge des LiFePO4 de l'ordre de 40%".
Je ne sais pas où tu as vu cela : on peut très bien charger une Winston à 100% sans dépasser 13,8 V, cela dépend de l'intensité finale. Voir par exemple la courbe de charge ci-dessous, provenant de marinehowto, et pourtant à 0,4C. D'autant plus sur nos voiliers où l'essentiel de la charge provient le plus souvent de panneaux solaires, avec une intensité nettement plus faible.
De plus, pour une batterie Pb 13,8 V est souvent la tension de floating, la tension de bulk étant de 14 et quelques (dépendant du type de batterie).
@smoothfroggy, tu écris concernant la mise en // d'une batterie lifepo4 avec une batterie plomb:
"le courant d'équilibrage est parfois très important ; certains BMS internes vont switcher OFF pour protéger la batterie LiFePO4 et eux même (les FETs ont une capacité maxi). Cela conduit généralement à ce que la batterie Pb reste en place et assure la fourniture électrique jusqu'à ce que le BMS interne commute à nouveau (certains sont automatiques) ce qui conduit à la répétition du scénario ou alors, si le BMS reste OFF, à ce que la batterie Pb se vide complètement et perde ainsi sa capacité. Dans le cas où le niveau de protection n'est pas atteint, le courant de circulation dans les deux batteries les amènent à chauffer ce qui est préjudiciable voire dangereux pour les deux. Si pas de protection, alors BMS HS et bricolage assuré."
Tu pourrais d'avantage développer dans quelles circonstance les deux types de batteries mises en // simple (sans commutateurs) pourrait donner lieu à des courants d'équilibrages important ? Ce n'est pas intuitif.
Et aussi concernant la phrase "si le BMS reste OFF, à ce que la batterie Pb se vide complètement et perde ainsi sa capacité". C'est le cas pour n'importe quel système avec des batteries plomb non ? Le fait ou non qu'il y ai une batterie lifepo4 en // change-t-il quelque chose à cette problématique ? Sur mon bateau j'ai une alarme basse tension pour cela.
@Smoothfroogy, tu écris:
"Certains mettent en parallèle une batterie type plomb : c'est possible mais assez 'capillotracté' voire dangereux de part les différences des deux chimies. Cela tend à ruiner les deux batteries plus ou moins rapidement (charge partielle LiFePO4 pour protéger la Pb, décharge de la LiFePO4 dans la Pb, courants non négligables entre Pb et LiFePO4 pendant l'équilibrage, ...)"
Pourrais-tu développer de quel danger exactement il s'agit et dans quelles circonstances.
Les mots sont importants, dangereux, de quel accident parles-tu, causé par quoi exactement. ou ? Quand ? Combien ? Sources ?
Pour la durée de vie des batteries, certainement la lifepo4 si chargée "plein pot" par un alternateur à 14,4V par exemple (en annexe un tableau). C'est devenu cependant un donnée d'une importance plus relative avec la diminution du coût des batteries style "drop in" (BMS incorporé).
En ce qui concerne la durée de vie de la plomb & lifepo4 mise en // hors charge, pourrais-tu développer en quoi ça affecte leur durée de vie ?
Les deux misent en // la tension d'équilibre sera de 13,2V +/-, soit 0,5V de plus que la tension d'une batterie plomb pleinement chargée en "stand alone". Pourrais-tu développer en quoi cette tension de 13,2V serait préjudiciable à la batterie plomb dans la durée si laissée ainsi ?
Pour la lifepo4, cette tension d'équilibre de 13,2V correspondra à une charge de 75% environ.
J'ai cru comprendre qu'il est bon de ne pas laisser une batterie lifepo4 à pleine charge. Dès lors est-ce que ce couplage n'est pas au contraire une manière de garder la lifepo4 en "bonne forme" car que partiellement chargée ? C'est ce que les autres sources d'informations trouvées semblent dire.
Merci d'avance.
Ca a du être dit 25 fois au dessus, mais la réponse simple :
- oui, quand le moteur tourne, on met tout en parallèle, et tout va bien
- quand le moteur tourne pas, on ne laisse pas en parallèle, et tout va bien (sinon, le plomb va mourir vitesse grand V)
- et on appellera cette batterie plomb la "batterie de démarrage", mais en vrai, comme on démarre en //, presque tout le jus va venir du parc lithium.
Un petit détail quand même :
dans 10ans, comme le lithium sera toujours en pleine forme, ca démarrera toujours au quart de tour, sauf que la batterie plomb aura éventuellement cramé depuis longtemps. Bref, il faudra la surveiller de temps en temps (vérifier qu'elle ne chauffe pas trop et qu'elle a une tension à vide dans les normes de la décence)
En fait, je modère mes propos :
pour un bateau moteur (ou voilier qui fait beaucoup de moteur), les batteries lithium vont en avoir marre d'être chargées en permanence : si vous êtes tout le temps à 100% d'état de charge, arrêtez : les lithium n'aiment pas ca, et vieillissent prématurément. Mais bon, il suffit de les vider, ou de régler leurs BMS (ou tout contrôleur faisant office de) pour qu'il cesse la charge au dessus de 80%.
D'une manière générale, pour la qualité du débat, il serait bien de justifier chaque affirmation par une explication précise du pourquoi, voir un graphe (exemple de matelot@19001) à défaut utiliser le conditionel ou de s'abstenir.
@materlot@19001,
Je suis tout à fait d'accord avec tes commentaires:
* Concernant la charge vs la tension, je me suis appuyé sur les données de Winston (voir le graph). A 13.8V, cela donne 3.45V par cellule et de l'ordre de 40% de charge pour 1C. Selon le même document, une charge à 0.5C permettra d'atteindre une capacité de l'ordre de 70%. je suis d'accord avec le fait que charger à une intensité plus faible permettra d'atteindre un taux de charge plus important à tension équivalente.
* Une batterie AGM standard à effectivement une tension de floating de 13.8V (13.65V pour les classiques lead acid) et une tension de charge bulk généralement entre 14.2-14.4V selon le type de batterie (à vérifier avec les données constructeur).
Mon raisonnement était basé sur une charge à 50-70A à partir de l'alternateur du bord donnant une durée de charge estimée à 2h30-3h30 pour un cycle de décharge de 65% de la LiFePO4 200Ah. Avec une batterie supplémentaire de protection load-dump 70-80Ah en parallèle (AGM pour des raisons de sécurité), la durée de charge devra augmenter. Les durées de charge bulk recommandées oscillent entre 2h et 3h. Le raisonnement (sans doute simpliste) a donc été de considérer qu'à partir de 3h de charge, la tension devrait ramenée à 13.8V max augmentant sensiblement la durée de charge. L'objectif étant de limiter la durée moteur, ce n'était pas acceptable.
Dans le cas d'une charge à partir d'une source autre qu'un alternateur, le problème peut être assez différent tant par la réaction des sources de charge à une rupture de charge que par le courant de charge sensiblement plus faible (excepté peut être pour les heureux possesseurs d'hydrogénérateurs). Je n'ai pas fait d'essais en ce sens ayant choisi une implémentation avec une architecture donnant la possibilité de couper la charge sans load-dump.
SmoothF.
Pour revenir à la question initiale concernant l'alternateur, moins de 5€ suffisent pour le protéger complètement contre tout risque de destruction sur le bateau.
J'ai déjà expliqué dans plusieurs fils qu'il suffit d'installer trois diodes TVS bidirectionnelles en triangle sur les 3 fils entre les bobines du stator et les diodes de redressement. Cela permet de protéger efficacement l'alternateur des nombreuses situations limites pour celui-ci qui n'existent sur aucun des autres véhicules équipés d'alternateur :
- Ouverture malencontreuse du coupe-circuit par un équipier quand l'alternateur est en pleine charge
- Déclenchement du disjoncteur de guindeau avec des batteries pleine quand l'alternateur débite à fond
- Ouverture du BMS à pleine charge
Sur nos bateaux, contrairement aux autres véhicules, l'alternateur a de plus en plus souvent une puissance très inférieure à celle des gros consommateurs électriques des bateaux (guindeaux, winch électriques, enrouleurs électriques,...). Ils ne sont pas vraiment conçus pour une telle utilisation. Les diodes contribuent également à améliorer la durée de vie des bobines et du régulateur.
Voici des photos de plusieurs modifications d'alternateur dont une photo avant l'ajout des trois diodes TVS. Il s'agit de deux alternateurs 24V.
La plupart du temps, il suffit d'enlever le carter en plastique qui protège la platine des diodes de redressement.
La gaine d'isolation en fibre de verre est immobilisée par collage avec une résine silicone haute température très fluide.
Pour un alternateur 12V, j'utilise des diodes 1.5KE22CA
Pour un alternateur 24V, j'utilise des diodes 1.5KE47CA
Dans ce fil je propose de garder une plomb dans un banc de batteries de servitude par ailleurs en LFP (j'ai 3 batteries plomb sur mon bateau en //, donc je pourrais par exemple en remplacer deux par des LFP) avec toutes les modifications que cet concept impose ou n'impose pas.
Ici un lien vers un blog de ce qui est pour moi de loin ce que j'ai trouvé de plus complet sur la question de ces bancs de batteries hybrides avec graphiques etc. Beau boulot !
Pour que tous suivent cette discussion, j'ai fait une traduction informatique du lien de Pierre3.
J'ai lu l'intégralité de cet article anglais, qui est clair et agréable à lire.
Néanmoins, les parties 2 et 3 ne sont que la confirmation expérimentale de ce qu'on pouvait déduire des deux premières courbes de décharge qu'il donne. On constate qu'il fait travailler la batterie LFP sur 90-95% de sa capacité ce qui obère sa durée de vie comme il le dit lui-même.
Dans la partie 4 sur l'intérêt économique d'un tel montage il s'en sort par une pirouette, qui est de dire que de toute façon au bout de 10 ans on aura envie de changer sa batterie de la même manière qu'on change sa voiture alors qu'elle est encore fonctionnelle.
Il ne donne aucun prix mais je suis dubitatif sur le bilan économique, quand on considère le coût des 300 Ah de batteries AGM-carbone et compte tenu du racourcissement de la durée de vie de la LFP.
Le seul intérêt me paraît être le fait d'avoir un plan A et un plan B grâce au commutateur de batteries, qui normalement reste en 1+2. Mais bon, j'ai la même chose avec deux batteries LFP.